Interfacial Effects on Transport Coefficient Measurements in Li-ion Battery Electrolytes

نویسندگان

چکیده

Development of Li + -containing electrolytes with improved transport properties requires reliable, reproducible, and ideally low volume techniques to rigorously understand ion-transport varying composition. Precisely measuring the complete set coefficients in liquid under battery-relevant operating conditions is difficult reliability these methods are sparsely described electrolyte literature. In this work, we apply a potentiostatic polarization-based characterization approach typically used for polymer systems an attempt fully measure all (conductivity, total salt diffusion coefficient, thermodynamic factor transference number) model system LiPF 6 ethylene carbonate—ethyl methyl carbonate (EC:EMC) mixture. Using systematic timescale statistical analyses, find that measured using polarization Li-Li symmetric cells exhibit strong correlation electrode interfacial resistance, indicating such probing both bulk phenomena. This reveals major roadblock characterizing where resistance significantly larger than ohmic resistance. As result, rely on metal stripping/plating do not readily result reliable coefficients, unlike similar solid electrolytes, resistances smaller at elevated temperatures interest electrolytes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separators for Li-Ion and Li-Metal Battery Including Ionic Liquid Based Electrolytes Based on the TFSI− and FSI− Anions

The characterization of separators for Li-ion or Li-metal batteries incorporating hydrophobic ionic liquid electrolytes is reported herein. Ionic liquids made of N-butyl-N-methylpyrrolidinium (PYR14+) or N-methoxyethyl-N-methylpyrrolidinium (PYR12O1+), paired with bis(trifluoromethanesulfonyl)imide (TFSI-) or bis(fluorosulfonyl)imide (FSI-) anions, were tested in combination with separators hav...

متن کامل

Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes.

There is an increasing worldwide demand for high energy density batteries. In recent years, rechargeable Li-ion batteries have become important power sources, and their performance gains are driving the adoption of electrical vehicles (EV) as viable alternatives to combustion engines. The exploration of new Li-ion battery materials is an important focus of materials scientists and computational...

متن کامل

Microstructural Analysis of the Effects of Thermal Runaway on Li-Ion and Na-Ion Battery Electrodes

Thermal runaway is a phenomenon that occurs due to self-sustaining reactions within batteries at elevated temperatures resulting in catastrophic failure. Here, the thermal runaway process is studied for a Li-ion and Na-ion pouch cells of similar energy density (10.5 Wh, 12 Wh, respectively) using accelerating rate calorimetry (ARC). Both cells were constructed with a z-fold configuration, with ...

متن کامل

Criteria for Reliable Electrochemical Impedance Measurements on Li-Ion Battery Anodes

Specially designed five-electrode cells contained two types of mixed ionic-electronic conductor ~MIEC! lithium-insertion anodes. These were graphite or Sn1.3Al0.3Ti1.7O1.95(PO4)3 tin composite oxide ~TCO! bonded powders sandwiched between nickel mesh current collectors as working lithium-ion anodes, with Li foils on both sides as reference electrodes, outside of which were two further Li foils,...

متن کامل

Modelling Li Ion Battery Electrode Properties

In recent years, interest in using lithium-ion (Li-ion) batteries as power sources for a wide range of devices (particularly portable devices) has grown significantly. There is thus a real need to understand at a fundamental level a wide range of battery performance criteria (energy density, power density, safety, durability, cost). Our working group considered how to model the fundamental elec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of The Electrochemical Society

سال: 2021

ISSN: ['0013-4651', '1945-7111']

DOI: https://doi.org/10.1149/1945-7111/ac0994